GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-III (NEW) EXAMINATION – SUMMER 2021

3130906 (NEW) EXAMINATION – SUMMER 2021 Date:08/09/2021

Subject Code:3130906 Subject Name:Electrical Circuit Analysis Time:10:30 AM TO 01:00 PM

Total Marks:70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

Marks 0.1 State and explain Superposition theorem. 03 (a) For the electrical network shown in Figure 1, find the value of unknown 04 **(b)** current I₁, I₂ and I₃ using the mesh analysis technique. The network shown in Figure 2 contains the dependent source and an 07 (c) independent source. Find the Norton's equivalent circuit across terminals A and B. Explain the initial condition in different passive electrical elements. What **Q.2** 03 (a) is the importance of initial conditions in network analysis? In the given circuit shown in **Figure 3**, capacitor C has initial voltage $V_c(0^-)$ 04 **(b)**)=5V and at the same time current through inductor L is zero. Obtain the dv(t)/dt at t=0⁺ if the switch K is closed at the time t=0 sec. In the circuit shown in Figure 4, a d.c. voltage of 10 volts is suddenly 07 (c) applied by closing switch to a series circuit consisting of resistor $R=10\Omega$, inductor L=1H and capacitor C=0.04F. Obtain the expression of current i(t)for t > 0. OR For the network shown in **Figure 5**, obtain the expression of current $i_I(t)$ 07 (c) and $i_2(t)$ for t>0. Consider switch K is closed at t=0 sec. **Q.3** Define the term (i) RMS values (ii) Apparent power (iii) Complex power. 03 **(a)** For the circuit diagram shown in **Figure 6**, obtain the impedance Z_{eq} and **(b)** 04 admittance Y_{eq}. In the network shown in Figure 7, determine the voltage V which results in (c) 07 a zero current through the impedance $2+j3\Omega$. OR Q.3 Explain in brief about the ideal transformer. 03 (a) (b) Explain the dot rule for mutually coupled circuit using the suitable example. 04 For the network shown in Figure 8, a three-phase, three-wire, balanced (c) 07 ABC system, with an effective line voltage of 120 V, has three impedances of $5 \angle 45^{\circ} \Omega$ in a \blacktriangle (delta) connection. Determine the line currents and draw

- q.4 (a) Convert the capacitance C (passive element) to Laplace domain using 03 Laplace transformation.
 - (b) Obtain Laplace transformation of the following time-domain function: 04 (i) f(t) = A (ii) $f(t) = e^{-at}$

1

	(c)	Obtain the step response of the series RC-circuit shown in Figure 9 .	07
		OR	
Q.4	(a)	For the network shown in Figure 10 , find the $Z_{21}(s)$.	03
	(b)	Define the term Poles and Zeros with suitable example.	04
	(c)	Determine the input impedance of the given network shown in Figure 11 .	07
		Assume all the initial conditions are to be zero.	
Q.5	(a)	What is the condition of symmetry of all different two port parameters?	03
	(b)	Derive expression of Y parameters in terms of Z parameters.	04
	(c)	Obtain the Y parameters of the given network in Figure 12 .	07
		OR	
Q.5	(a)	Explain the transmission line parameters for the two-port network.	03
	(b)	Obtain Y-parameters for the given network shown in Figure 13.	04
	(c)	Obtain the Z parameters of the given network in Figure 14.	07

Figure - 1

2+j3 r

Figure - 10

