Enrolment No._____

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III (NEW) EXAMINATION – SUMMER 2021 ode:3130907 Date:11/09/2021

Subject Code:3130907 Subject Name:Analog & Digital Electronics

Time:10:30 AM TO 01:00 PM

Total Marks:70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

			MARKS
Q.1	(a)	Draw transistor C-E amplifier circuit. Draw its ac equivalent circuit.	03
	(D)	briefly explain the function of each block.	04
	(c)	Explain how Op-amp works as summing amplifier.	07
Q.2	(a)	List applications of instrumentation amplifier.	03
	(b)	Explain the following terms. (1) PSRR (2) Input bias current (3) Input offset Voltage (4) CMRR.	04
	(c)	Explain in detail voltage follower with its applications.	07
		OR	
	(c)	What do you mean by slew rate in an OP-AMP? Also mention about causes of slew rate and explain its significance in applications.	07
Q.3	(a)	What are the advantages of active filters over passive filters?	03
	(b)	Sketch Wein bridge oscillator. Explain working.	04
	(c)	Draw the circuit op-amp as differentiator and explain with necessary waveforms.	07
		OR	
Q.3	(a)	How to detect peak of waveform using OP-AMP?	03
	(b)	Compare: Comparator and Schmitt trigger.	04
	(c)	Draw and explain the use of op-amp as a zero crossing detector.	07
Q.4	(a)	Compare SOP and POS.	03
	(b)	Write short note on Gray code.	04
	(c)	Prove that NAND and NOR gates are universal gates.	07
04	(a)	UK Design half subtractor logic circuit	03
Q. -	(a) (h)	Explain Master-Slave I-K flin-flon configuration	03
	(c)	Simplify the Boolean function $F(A,B,C,D) = \Sigma m (2.5.7.8.11.14.15)$	07
	(0)	$\Sigma d=(0.3.6.10)$ using K-map method. Implement using basic logic	07
		gates.	
Q.5	(a)	Sketch sample and hold circuit and explain its working.	03
	(b)	Explain resolution and quantization error in reference to ADC.	04
	(c)	Design 4-bit up/down ripple counter.	07
		OR	
Q.5	(a)	Compare EPROM with FLASH memory.	03
	(b)	Explain R-2R ladder DAC with necessary diagram.	04
	(c)	Draw 4-bit down counter; explain its working with timing diagram and truth table.	07
