GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- III (NEW) EXAMINATION - SUMMER 2022 Subject Code:3130908 Date:11-07-2022 Subject Name:Applied Mathematics for Electrical Engineering Time:02:30 PM TO 05:00 PM Total Marks:70 Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- **3.** Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

MARKS

												MAKK
Q.1	(a)	Use fa	lse pos	ition m	nethod	to fir	nd the ro	oot of	f(x) =	$x^2 - x$	-2 = 0	03
		Use false position method to find the root of $f(x) = x^2 - x - 2 = 0$ in the range $1 < x < 3$, correct to three decimal places.										
	(b)										04	
	()	X	6	7	7	8	8	8	9	9	10	••
		V	5	5	4	5	4	3	4	3	3	
	(a)		_	_	nortic	-	distance	s fro	m noint	on its	-	07
	(c)) The velocity <i>v</i> of a particle at distance <i>s</i> from point on its path is given by the following table:									paul is	07
		s (me		lonowi	0	10	20	30	40	50	60	
			ter/sec	ond)	47	58		<u> </u>	61	52	38	
					-		meter us					
		n'ina ui		laken	10 ii av		meter us	sing 5	mpson	51/51	uie.	
Q.2	(a)								03			
		of 4 is to be formed in such a way that there are 2 statisticians and 2 engineers. Find the probability.										
	(b)	Find co	d coefficient of variation for the following distribution.								04	
		X_i		5		10	1	5	20		25	
		f_i		7		4	6	5	3		5	
	(c)									prrect to	07	
	(-)	four decimal places using bisection method. $x = x^2 + 11 = 0$ contect to										
	OR											
										oot of	07	
		$f(x) = x - 1.2 \sin x - 0.5 = 0$, correct to four decimal places, which										-
										-	,	
Q.3	(a)	lies between 1.5 and 2 by using Newton-Raphson method.									03	
X	()	State Trapezoidal rule with $n=10$ and using it evaluate $\int e^x dx$.										
										0		
	(b)) Fit a second degree parabola $y = ax^2 + bx + c$ in least square sense								04		
		for the following data:										
		x		1		2	3	3	4		5	
		у		10		12	1	3	16		19	
	(c)		Compute the values of $f(x)$ at x=0.02 and x=0.38 using Newton's							07		
	x-)	-			v	. ,	tion form			•		-
				0.0		$\frac{1}{0.1}$	0.	1	0.3		0.4	
		f(x))	1.0000		.1052	1.22		1.3499	9 1	.4918	

Q.3	(a)	Evaluate the integral	$\int_{-1}^{1} \frac{dx}{1+x^2}$ by Gaussian integration two	o point 03
		formula.		

- Find the third divided difference with arguments 2, 4, 9, 10 of the **(b)** 04 function $f(x) = x^3 - 2x$.
- (c) Determine the interpolating polynomial of degree three using 07 Lagrange's interpolation formula

x	0	1	3	4				
у	-12	0	12	24				
Define sample space, simple events and compound events.								

(a) **(b)** Is the function $f(x) = \begin{cases} 0, x \le 0\\ 8xe^{-4x^2}, x > 0 \end{cases}$ a probability distribution?

(c)

O.4

07

07

03

04

Using Picard's method find a solution of $\frac{dy}{dx} = \frac{x^2}{y^2 + 1}$, y(0) = 0 upto second approximation.

OR

- A person hits a target with rifle shot in 4 out of 5 times. Another 03 **O.4** (a) person can hit the same target with the same rifle in 3 out of 4 times. Find the probability of the target being hit when both try or by at least one hits the target.
 - **(b)** An equipment will function only if three components A, B and C are 04 all working. The probability of A's failure during one year is 5% that of B's failure is 15% and that of C's failure is 10%. What is the probability that the equipment will fail before the end of that year?
 - Use fourth order Runge-Kutta method to find the value of y when 07 (c) x=0.2, given that $y' = x + y^2$, and y=1 when x=0.
- Q.5 Find the skewness when the second and third central moments are 16 03 (a) and 42 respectively.
 - **(b)** The following distribution shows the selling of cars in a week by a 04 dealer.

No. of cars	0	1	2	3	4	5		
Probability 0.2 0.25 0.35 .05 0.08 0.07								
What is the average number of cars be sells?								

What is the average number of cars he sells?

(c) Find the Karl Pearson's coefficient of skewness for: Class 50-55 55-60 60-65 65-70 70-75 Frequency 8 10 15 17 8

Also show that the distribution is platykurtic.

OR

- Find S.D. of the marks obtained by students: 65, 58, 67, 34, 48, 45, 03 0.5 (a) 70, 62, 60, 50.
 - There are 5 black balls and 4 red balls. Find the number of ways in 04 **(b)** which 6 balls can be selected so that there are at least 2 red balls in that selection.
 - Three machines A, B and C produce 50%, 30% and 20% of the total 07 (c) number of items. The production of defective item is 3%, 4%, 5% respectively on each machine. If an item selected at random and is found to be defective, find the probability that the item was produced by machine A.
