Enrolment No.____

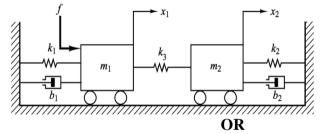
GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-III (NEW) EXAMINATION – WINTER 2021

Date:02-03-2022

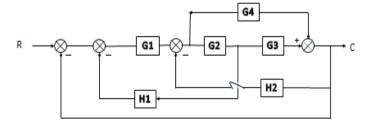
Subject Code:3130905 Subject Name:Control System Theory Time:10:30 AM TO 01:00 PM

Total Marks:70

Instructions:


- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- **3.** Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

Marks


Q.1 (a) List out the difference between open loop and closed loop control system.
 (b) The Characteristic equation of a feedback control system is
 O4
 S⁵+4S⁴+8S³+8S²+7S+4=0

Predict stability of system by following R-H criterion.

- (c) Sketch the Root locus for the open loop transfer function of unity feedback control system given by $G(s) = K/S(S^2+6S+25)$. Also determine centroid and angle of departure. 07
- Q.2 (a) Find the closed loop transfer function, undamped natural frequency & 03 damping ratio of the system whose system response is given by $C(t)=1+0.2 e^{-60t}-1.2 e^{-10t}$ subjected to a unit step input.
 - (b) Discuss steady state error constants of the Type-0 system for a Ramp 04 input.
 - (c) Evaluate the differential equation for the given system and convert from 07F to V and F to I electrical equation form.

(c) Evaluate overall transfer function for the system shown in Figure below. 07

- Q.3 (a) Define polar plot with a sketch of simple example. 03
 - (b) Summarize limitations of frequency domain approach. 04
 - (c) A unity feedback control system has $G(s) = \frac{80}{s(s+1)(s+20)}$. Make use of 07

bode plot to measure gain margin and phase margin and identify stability of system.

		OR	
Q.3	(a)	Define the following terms with respect to frequency response (i) Gain	03
		Margin (ii) Phase Margin (iii) Gain cross-over frequency.	
	(b)	State and explain nyquist stability criteria.	04
	(c)	The open loop transfer function of a system is,	07
		$G(S) = 800(S+2)/(S^2(S+10)(S+40))$	
		Sketch the bode plot and comment on stability.	
Q.4	(a)	Define compensation. List out different types of compensations.	03
	(b)	Demonstrate transfer function of lead network.	04
	(c)	Explain PID controller.	07
		OR	
Q.4	(a)	State limitations and effects of Lag compensator.	03
	(b)	Discuss advantages of frequency domain design.	04
	(c)	Explain the design of lag lead compensator using root locus.	07
Q.5	(a)	List out different types of controller and need of controller.	03
	(b)	Compute the state transition matrix for the state model whose matrix A is given by	04
		$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$	
	(c)	Solve transfer function from the given state space model.	07
		$\begin{bmatrix} \dot{x_1} \\ \dot{x_2} \end{bmatrix} = \begin{bmatrix} -5 & -1 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 2 \\ 5 \end{bmatrix} u$	

$$Y = \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
OR

Q.5 (a) Define Derivative controller. Mention two drawbacks of derivative action. 03

- (b) Discuss properties of state transition matrix.
- (c) A linear time invariant system is described by the following state variable 07 model.

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ -2 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$

Y=[1 0] $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$

Test for Controllability and Observability of the system.

04