## CULLED AT TECHNICI OCICAL UNIVERSITY

|                                             |             | GUJAKAI IEUNINULUGIUAL UNIVERSII I<br>De semested III (NEW) EVAMINATION WINTED 2021                                                                                                                                                                                                                                                               |          |  |  |
|---------------------------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--|--|
| Subject Code:3130906                        |             |                                                                                                                                                                                                                                                                                                                                                   |          |  |  |
| Subject Couc.5150700 Date.17-02-202         |             |                                                                                                                                                                                                                                                                                                                                                   |          |  |  |
| Time: 10:20 AM TO 01:00 DM Total Marks      |             |                                                                                                                                                                                                                                                                                                                                                   |          |  |  |
| Inne. 10:30 ANI 10 01:00 FWI 10tal Walks. / |             |                                                                                                                                                                                                                                                                                                                                                   |          |  |  |
| 111501 0                                    | 1.          | Attempt all questions.                                                                                                                                                                                                                                                                                                                            |          |  |  |
|                                             | 2.          | Make suitable assumptions wherever necessary.                                                                                                                                                                                                                                                                                                     |          |  |  |
|                                             | 3.          | Figures to the right indicate full marks.                                                                                                                                                                                                                                                                                                         |          |  |  |
|                                             | 4.          | Simple and non-programmable scientific calculators are allowed.                                                                                                                                                                                                                                                                                   |          |  |  |
|                                             |             |                                                                                                                                                                                                                                                                                                                                                   | MARKS    |  |  |
| Q.1                                         | (a)         | State and explain Superposition theorem for the solution of electrical network.                                                                                                                                                                                                                                                                   | 03       |  |  |
|                                             | (b)         | State and explain Reciprocity theorem for the solution of electrical circuits.                                                                                                                                                                                                                                                                    | 04       |  |  |
|                                             | (c)         | Determine the current through $j5\Omega$ using superposition theorem of network shown in Fig.1                                                                                                                                                                                                                                                    | 07       |  |  |
| Q.2                                         | (a)         | State and explain Thevenin theorem for the solution of complicated networks                                                                                                                                                                                                                                                                       | 03       |  |  |
|                                             | <b>(b</b> ) | What is the significance of Maximum Power transfer theorem? State and explain with example.                                                                                                                                                                                                                                                       | 04       |  |  |
|                                             | (c)         | In the network shown in Fig.2, determine the Thevenin equivalent circuit for the load $R_L$ .                                                                                                                                                                                                                                                     | 07       |  |  |
|                                             |             | OR                                                                                                                                                                                                                                                                                                                                                |          |  |  |
|                                             | (c)         | Find the current through branch "b-e" using Norton theorem for the network as shown in Fig.3.                                                                                                                                                                                                                                                     | 07       |  |  |
| Q.3                                         | (a)         | Why the current in inductor and voltage in capacitor cannot change simultaneously?                                                                                                                                                                                                                                                                | 03       |  |  |
|                                             | <b>(b</b> ) | Explain and derive the step response to R-L series circuit using Laplace<br>Transformation method                                                                                                                                                                                                                                                 | 04       |  |  |
|                                             | (c)         | Construct the exact dual of the network of Fig-4<br>OR                                                                                                                                                                                                                                                                                            | 07       |  |  |
| Q.3                                         | (a)         | Point out the relations between voltage and current for the following passive elements. (1) Resistor (2) Capacitor.                                                                                                                                                                                                                               | 03       |  |  |
|                                             | (b)         | Give details of the procedure to obtain sinusoidal steady state response of<br>a circuit                                                                                                                                                                                                                                                          | 04       |  |  |
|                                             | (c)         | The circuit shown in Fig.5 consists of a resistor and a relay with inductance (L). The relay is adjusted in such a way that it is actuated when the current through the coil is 8 mA. The switch is closed at t=0 and it is observed that the relay is actuated when $t = 0.1$ sec. Determine (a) the value of L and (b) the equation of current. | 07       |  |  |
| Q.4                                         | (a)<br>(b)  | Enlighten significance of poles and zeros in network functions.<br>As shown in Fig.6, the switch K is opened at time $t = 0$ . Obtain the particular solution for voltage v(t) across the parallel circuit using Laplace transformation.                                                                                                          | 03<br>04 |  |  |
|                                             | (c)         | The switch is open at $t = 0$ for the circuit shown in Fig.7. Steady state condition has been achieved before switching. Find the expression for                                                                                                                                                                                                  | 07       |  |  |

the current i(t) using Laplace transformation.

1

## OR

| Q.4 | <b>(a)</b> | Explain concept of Laplace transformation. What are the advantages and disadvantages of Laplace transformation?               | 03 |
|-----|------------|-------------------------------------------------------------------------------------------------------------------------------|----|
|     | <b>(b)</b> | What are the properties of Laplace transformation? Explain in detail.                                                         | 04 |
|     | (c)        | Obtain current equation $i(t)$ for $t \ge 0$ using Laplace Method for Fig.8.                                                  | 07 |
| Q.5 | (a)        | Derive condition of Symmetry of h-Parameter.                                                                                  | 03 |
|     | <b>(b)</b> | Derive relationship of z-Parameter in terms of ABCD Parameter                                                                 | 04 |
|     | (c)        | Obtain h-Parameters of the network shown in Fig.9                                                                             | 07 |
|     |            | OR                                                                                                                            |    |
| Q.5 | <b>(a)</b> | Derive condition of reciprocity of y-Parameters.                                                                              | 03 |
|     | <b>(b)</b> | Derive relationship of h-Parameter in terms of g-Parameters                                                                   | 04 |
|     | (c)        | Obtain Transmission Parameters of the network shown in Fig.10. Find<br>whether the network is (i) symmetrical (ii) reciprocal | 07 |
|     |            |                                                                                                                               |    |

\*\*\*\*









