GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-III (NEW) EXAMINATION - WINTER 2021 Subject Code:3130908 Date:17-02-2022 Subject Name: Applied Mathematics for Electrical Engineering Time:10:30 AM TO 01:00 PM **Total Marks:70 Instructions:**

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.
- 03 **Q.1** (a) Construct the difference table for $f(x) = (x+2)^2$ for x = 1, 2, 3 and find $\nabla^2 f(3)$.
 - (b) Find a real root of the equation $x^3 4x 9 = 0$ using bisection method in 04 four stages.
 - (c) Explain Bay's rule for probability. Three boxes contained 10%, 20% and 07 30% red colors pens. A pen is selected at random whose color is red. Determine the probability that it came from 3rd box, 2nd box, 1st box.

Q.2 (a) Prove that
$$(1+\Delta)(1-\nabla) = 1$$
. 03

Using Picard's method solve $\frac{dy}{dx} = x - y^2$ with the initial condition **(b)** y(0) = 1 and compute y(0.1).

(c) Evaluate $\int_{0}^{0} \frac{1}{1+x} dx$ for n = 6 using Simpson's one third rule and

Simpson's three eights rule. Also find an approximate value of $\log_e 2$.

OR

- 07 (c) Using the Runge Kutta method of fourth order solve $\frac{dy}{dx} = xy + y^2$ with the initial condition y(0) = 1. Compute y(0.2) by taking h = 0.1.
- Q.3 03 **(a)** Is $f(x) = \frac{x}{6}$, x = 0, 1, 2, 3, 4 define probability distribution? Justify your answer.
 - (b) Compute f(9.2) from the following values using Newton's divided 04 difference formula.

x	8	9	9.5	11
f(x)	2.079442	2.197225	2.251292	2.397895

Using the method of least squares, find the best fitting second degree 07 (c) curve to the given following data:

X	1	2	3	4
У	6	11	18	27

(a) For the following distribution, find the value of k. 0.3 5 3 4 х 1 2

04

07

	f(x)	(0.1	k	0).2	3 <i>k</i>	0.3		
(b)	Using	the	Euler	's r	nethod	l, find	y(0.2)	given	that	04

$$\frac{dy}{dx} = y - \frac{2x}{y}, y(0) = 1, h = 0.1$$

(c) Find the root of the equation $x \sin x + \cos x = 0$ using Newton-Raphson 07 method correct to three decimal places.

The the median of the following data.										
Marks	<20	21-30	31-40	41-50	51-60	61-70				
No. of	5	15	20	6	6	8				
Students										

(b) Using the Newton forward formula, find the approximate value of f(1.6) 04, if

x	1	1.4	1.8	2.2
f(x)	3.49	4.82	5.96	6.5

(c) The joint probability density function of two continues random variable X
07 and Y is given by

$$f(x, y) = cxy; 0 < x < 4, 1 < y < 5$$

=0; otherwise

Find (a) value of constant c, (b)
$$P(X \ge 3, Y \le 2)$$
,

(c)
$$P(1 < X < 2, 2 < Y < 3)$$
.

OR

Q.4 (a) Find the first four moments of the observation 1,3,5,7,8,9.

(b)	Using Langrange's interpolation formula, find $f(3)$ from the data							
	x	1	5	7	6			
	f(x)	1.10	2.00	3.23	4.50			

(c) Find a real root of the equation $x \log_{10} x = 1.2$ by using Regula- falsi 07 method correct to four decimal places.(or four stages)

Q.5 (a) If A and B are independent events, where $P(A) = \frac{1}{4}$, $P(B) = \frac{2}{3}$. 03

Find P(AUB).

(b) Compute $\int_{0}^{2} (1+x)dx$ by a two point Gaussian quadrature formula.

(c) Find the Karl Pearson's coefficient of skewness for the following data: 07

Marks	20	21	22	23	24	25	26	27	28
No. of	7	12	25	10	8	6	8	3	1
students									
OR									

Q.5 (a) If A and B are mutually exclusive events and P(A) = 0.30, P(B) = 0.45, 03 then find the probability of the events, (a) P(A') (b) $P(A \cup B)$ (c) $P(A' \cap B')$.

- (b) Evaluate the integration $\int_{4}^{5.2} \log_e x dx$ using Simpson's $\frac{3}{8}$ th rule.take h = 0.2.
- (c) Find the mean, median and mode for the following data:

Class	50-	53-	56-	59-	62-	65-	68-	71-	74-
	53	56	59	62	65	68	71	74	77
Frequency	3	8	14	30	36	28	16	10	5

07

03

03

04

04